metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nagihan Çaylak,^a Tuncer Hökelek,^a* F. Elif Öztürkkan^b and Hacali Necefoğlu^b

^aHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey, and ^bKafkas University, Department of Chemistry, 63100 Kars, Turkey

Correspondence e-mail: merzifon@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.046 wR factor = 0.131 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(4-chlorobenzoato- κO)bis(nicotinamide- κN)cobalt(II)

In the title compound, $[Co(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$, the Co^{II} atom lies on a centre of inversion and is coordinated in a distorted octahedral geometry by two 4-chlorobenzoate anions, two nicotinamide molecules and two water molecules, all of which act as monodentate ligands. Intermolecular O-H···O and N-H···O hydrogen bonds link the molecules into two-dimensional sheets.

Comment

Nicotinamide (NA) is one form of niacin and a deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. The nicotinic acid derivative *N*,*N*-diethylnicotinamide (DENA) is an important respiratory stimulant. Transition-metal complexes with biochemical molecules show interesting physical and/or chemical properties, which may find applications in biological systems (Antolini *et al.*, 1982). To the best of our knowledge, only a few structures of Co^{II} complexes with nicotinic and/or benzoic acid derivatives as ligands have been reported to date (Amiraslanov *et al.*, 1979; Nadzhafov *et al.*, 1981; Mikelashvili, 1982; Hökelek & Necefoğlu, 1997; 1998; 1999*a*,*b*,*c*, 2007*a*).

In the title compound, (I), the Co^{II} atom lies on a centre of inversion and is coordinated by two 4-chlorobenzoic acid anions, two NA molecules and two water molecules (Fig. 1 and Table 1), all of which act as monodentate ligands. The slightly distorted octahedral coordination geometry is comparable to that in similar compounds (Hökelek & Necefoğlu, 1997; 1998; 1999*a*,*b*,*c*, 2007*a*). The near equality of the C1–O1 [1.251 (4) Å] and C1–O2 [1.257 (4) Å] bonds of the carboxylate group indicates a delocalized bonding arrangement,

© 2007 International Union of Crystallography All rights reserved Received 26 March 2007 Accepted 13 April 2007

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Unlabelled atoms are related to labelled atoms by the symmetry code (-x, -y, -z). Dashed lines denote $O-H\cdots O$ hydrogen bonds.

Partial packing diagram of (I), showing hydrogen bonds (dashed lines) linking the complexes into 2-dimensional sheets in the *ab* planes. H atoms not involved in hydrogen bonding are omitted.

rather than localized single and double bonds as has been observed in, for example, bis(4-hydroxybenzoato- κO)bis-(nicotinamide- κN)zinc(II) (Necefoğlu *et al.*, 2002), diaquabis[4-(dimethylamino)benzoato- κO]bis(nicotinamide- κN)cobalt(II) dihydrate (Hökelek & Necefoğlu, 2007*a*) and tetraaquabis[4-(dimethylamino)benzoato- κO]manganese(II) dihydrate (Hökelek & Necefoğlu, 2007*b*). This may be influenced by the intra- and intermolecular O-H···O and N-H···O hydrogen bonds involving the carboxylate O atoms (Fig. 2 and Table 2).

In the crystal structure, the amide groups of the NA molecules form centrosymmetric hydrogen-bonded dimers (Fig. 2). $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds further link the molecules into two-dimensional sheets lying parallel to the *ab* plane (Fig. 2).

Experimental

The title compound, (I), was prepared by reaction of $CoSO_4$ (1.55 g, 10 mmol) and NA (2.44 g, 20 mmol) in H_2O (100 ml) with sodium 4chlorobenzoate (3.11 g, 20 mmol) in H_2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving pink single crystals.

Crystal data

$[Co(C_7H_4ClO_2)_2(C_6H_6N_2O)_2-$	$\beta = 86.84 \ (1)^{\circ}$
$(H_2O)_2]$	$\gamma = 71.55 \ (2)^{\circ}$
$M_r = 650.32$	$V = 707.13 (9) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 1
a = 7.5945 (2) Å	Mo $K\alpha$ radiation
b = 9.9333 (2) Å	$\mu = 0.85 \text{ mm}^{-1}$
c = 10.0701 (3) Å	T = 294 (2) K
$\alpha = 78.90 \ (1)^{\circ}$	$0.30 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Enraf-Nonius TurboCAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.788, T_{\max} = 0.842$ 3086 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.131$ S = 1.032862 reflections 203 parameters 8 restraints 2862 independent reflections 2259 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$ 3 standard reflections

frequency: 120 min intensity decay: 1%

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.71 \text{ e } \text{ \AA}^{-3}$ $\Delta \rho_{min} = -0.71 \text{ e } \text{ \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Co-O1	2.074 (2)	Co-N1	2.146 (3)
Co-O4	2.134 (2)		
$01 - Co - O4^{i}$	92.53 (9)	O1 ⁱ -Co-N1	89.65 (9)
01-Co-O4	87.47 (9)	O4 ⁱ -Co-N1	92.93 (9)
D1-Co-N1	90.35 (9)	O4-Co-N1	87.07 (9)

Symmetry code: (i) -x, -y, -z.

Table 2		
Hydrogen-bond ge	ometry (Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
04−H42···O2	0.90 (4)	1.74 (5)	2.632 (4)	167 (5)
$O4-H41\cdots O3^{ii}$	0.95 (3)	1.95 (3)	2.887 (4)	169 (3)
$M2 - H21 \cdots O2^{iii}$	0.91 (3)	2.03 (3)	2.885 (4)	155 (3)
$M2 - H22 \cdots O3^{iv}$	0.89 (4)	2.07 (4)	2.923 (5)	161 (3)
		(***)	(1)	

Symmetry codes: (ii) -x + 1, -y, -z; (iii) -x, -y + 1, -z; (iv) -x + 1, -y + 1, -z.

H atoms of the water molecule and NH_2 group were located in difference Fourier maps and refined isotropically with the O-H and N-H distances restrained to 0.92 (2) Å, and with the H···H

distances restrained to 1.52 (4) Å. The remaining H atoms were positioned geometrically, with C–H = 0.93 Å, and constrained to ride on their parent atoms, with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). *Zh. Strukt. Khim.* **20**, 1075–1080. (In Russian.) Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). *Inorg. Chem.* 21, 1391–1395.

- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Hökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187-189.
- Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.
- Hökelek, T. & Necefoğlu, H. (1999a). Anal. Sci. 15, 1043-1044.
- Hökelek, T. & Necefoğlu, H. (1999b). Acta Cryst. C55, 545-547.
- Hökelek, T. & Necefoğlu, H. (1999c). Acta Cryst. C55, 1438-1440.
- Hökelek, T. & Necefoğlu, H. (2007a). Acta Cryst. E63, m1078-m1080.
- Hökelek, T. & Necefoğlu, H. (2007b). Acta Cryst. E63, m821-m823.
- Mikelashvili, Z. V. (1982). Dissertation, Tbilisi State University, Georgia. (In Russian.)
- Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). *Zh. Strukt. Khim.* **22**, 124–128. (In Russian.)
- Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.